dimanche 14 août 2011

MOUVEMENT D'UN PROJECTILE DANS LE CHAMP DE PESANTEUR UNIFORME

MOUVEMENT D'UN PROJECTILE DANS LE CHAMP DE PESANTEUR UNIFORME
ENONCE : Projectile dans le champ de pesanteur  supposé uniforme

Un mobile ponctuel M glisse le long d'une table inclinée d'un angle a = 30° sur l'horizontale. Il quitte celle-ci, à la date t = 0 s, au point Mo, avec une vitesse  . 
 · 1 Préciser les conditions initiales. Calculer, à t = 0 s, les cordonnées du vecteur position  et du vecteur vitesse  dans le repère orthonormé(c)

·
 2
 Déterminer les équations horaires du mouvement. Montrer que le mouvement a lieu dans un plan. (c)


· 3 Etudier la trajectoire aérienne du mobile. Montrer que cette trajectoire, entre Mo et S, est parabolique. (c)


·
 4
 Déterminer les coordonnées du point d'impact S sur le sol ainsi que la date tS et la vitesse VS du mobile juste avant le choc. (c)


On donne :g = 9,8 N / kgVo = 0,80 m / sh = OMo = 2 m

SOLUTION :

· 1 (e) Précisons les conditions initiales.
A la date t = 0 s, les vecteurs position  et vitesse  ont pour coordonnées :

x0 = 0 (1)
y0 = OMo = h = 2 m (2)
z0 = 0 (3)


V0x =  cos ( ) = 0,80 cos ( - 30° ) = 0,693 m / s (4)
V0y =  cos () = 0,80 cos ( - 120° ) = - 0,400 m / s (5)
V0z = 0 m / s (6)

·
 2
 (e) Déterminons les équations horaires du mouvement.
Référentiel Galiléen : le solide Terre auquel on associe le repère orthonormé (O ,).
Système étudié : le mobile M.
Force appliquée : le poids  = m  (7) (essentiellement attraction gravitationnelle de la Terre sur le mobile M de masse m)
Appliquons la deuxième loi de Newton (voir la leçon 11) :
Dans un référentiel Galiléen, la somme des forces extérieures appliquées à un solide est égale au produit de la masse m du solide par l'accélération  de son centre d'inertie :
(8)
Ici, on écrit :
(9)
L'accélération est donc :
(10)
Les coordonnées du vecteur accélération sont donc, en posant g =  :

ax = dVx / dt = 0 (11)
a= dVy / dt = - g (12)
a= dVz / dt = (13)
· Cherchons les primitives de ces trois fonctions. On obtient, avec 3 contantes C1, C2 et C3 , les coordonnées du vecteur vitesse :

Vx = C1 (14)
Vy = - g + C2 (15)
Vz = C3 (16)
Les 3 constantes C1, C2 et C3 sont déterminées en se plaçant à l'instant initial. Elles sont égales aux coordonnées du vecteur vitesse , à l'instant 0 (voir ci-dessus). Par conséquent :

 Vx = dx / dt = V0 cos ( - 30° ) (17)
Vy = dy / dt = - g t + V0 cos ( - 120° ) (18)
Vz = dz / dt = 0 (19)
· Cherchons de nouveau les primitives de ces trois fonctions. On obtient les coordonnées du vecteur vitesse position :


x = V0 cos ( 30° ) + C4 (20)
y = t² + V0 cos ( 120° ) t + C5 (21)
z = C6 (22)
On a tenu compte du fait que cos ( - 30° ) = cos ( 30° ) et que cos ( - 120° ) = cos ( 120° )
Les 3 constantes C4, C5 et Csont déterminées en se plaçant à l'instant initial. Elles sont égales aux coordonnées du vecteur position initiale , à l'instant 0 (voir ci-dessus). Par conséquent :


x = V0 cos ( 30° ) t + 0 (23)
y = t² + V0 cos ( 120° ) + h (24)
z = 0 (25)
· Comme z = 0, la trajectoire est plane. Le mouvement a lieu dans le plan vertical (xoy). Les équations horaires paramétriques du mouvement sont :

x = V0 cos ( 30° ) t (23)
y = - t² + V0 cos ( 120° ) + h = t² - V0 sin ( 30° ) t + h (24)
z = (25)
Remarque : Tous les calculs précédents peuvent être faits, plus rapidement, dans un tableau (les normes et  sont notées V0 et g) :
 
· Dans le tableau, on a utilisé les relations suivantes :

cos (- 30°) = cos (30°)cos (120°) = - sin (30°)cos (180°) = - 1

·
 3 
(e) Etudions la trajectoire aérienne du mobile. Montrons que cette trajectoire, entre Mo et S, est parabolique.

· L'équation x = V0 cos ( 30° ) t  donne t = X / Vcos (30°) (23 bis)
Portons t = X / Vcos (30°) dans l'équation  = -  - V0 sin ( 30° ) + h (24)
On obtient l'équation de la trajectoire aérienne du mobile :

Y = - ( g / V0² cos² 30° ) X² - tan (30°) X + h (26)
Y = - 10,2 X² - 0,577 X + 2 (27)
Entre Mo et S, la trajectoire aérienne du mobile est donc un arc de parabole.

· 4 (e) Déterminons les coordonnées du point d'impact S du mobile sur le sol ainsi que la date tS et la vitesse correspondante VS.

· Au point S on a yS = 0 m.
La relation Y = - 10,2  - 0,577 + 2 (27) donne 0 = - 10,2.x² - 0,577.x + 2.
C'est un trinôme du second degré de la forme 0 = a x² + b x + c
Le discriminant est D = b² - 4ac = 81,13
Les racines sont  = - 0,469 m et  = 0,412 m.
Physiquement, la bonne solution est :

xS = 0,412 m (28) associé à yS = 0 m (29)
L'abscisse x1 correspond à un point virtuel (intersection de la parabole, prolongée du coté x < 0, avec le sol).
· La relation x = V0 cos ( 30° ) t (23)donne :
tS = xS / ( Vo cos 30° ) = 0,412 / ( 0,8 ´ cos 30° )

tS = 0,595 s (30)
· Les relations :
Vx = V0 cos ( - 30° ) (17)
Vy = - g t + V0 cos ( - 120° ) (18)
permettent de calculer VS et VS :



VS = Vo cos 30° = 0,693 m / s (31)
VS y = - g tS - Vo sin 30° = - 6,231 m / s (32)
On en déduit VS² = V²S x + V²S = 0,693² + ( - 6,231 )² = 39,31 m² / s² soit :

VS = 6,27 m / s (33)
Remarque : Le théorème de l'énergie cinétique, étudié en classe de première, donne plus rapidement la solution. Rappelons son énoncé :
Dans un référentiel Galiléen, la variation de l'énergie cinétique d'un solide, entre deux instants t initial et t final, est égale à la somme des travaux des forces extérieures appliquées au solide entre ces deux instants.
Pour un solide en translation :
m.V²final -  m.V²initial = W(  )ext + W(  )ext + ... (21)
Ici, on écrira :
m VS² -  m VMo² = W (  )
m VS² -  m VMo² = m g h soit
VS² = 2 g h + VMo² soit
VS² = 2 ´ 9,8 ´ 2 + 0,80² = 39,84 m² / s²

VS = 6,31 m / s (33 bis)
L'écart relatif entre les valeurs de Vs données par les relations (33) et (33 bis) est inférieur à 1/100. Cet écart n'est dû qu'aux approximations faites dans les calculs.

Aucun commentaire:

Enregistrer un commentaire